翻訳と辞書
Words near each other
・ Koenoem language
・ Koenraad Degroote
・ Koenraad Dillen
・ Koenraad Elst
・ Koenraad Logghe
・ Koentjaraningrat
・ Koenwald
・ Koeberg Alert
・ Koeberg Commando
・ Koeberg Nuclear Power Station
・ Koeberlinia
・ Koebner phenomenon
・ Koech
・ Koecher
・ Koecher–Maass series
Koecher–Vinberg theorem
・ Koechlin
・ Koechlin family
・ Koechlin Island
・ Koeda Sembrani
・ Koedange
・ Koedfoltos
・ Koedfoltos hackeri
・ Koedfoltos parducka
・ Koedijk
・ Koedoe
・ Koedood
・ Koefnoen
・ Koegas atrocities
・ Koegathe Rabithome


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Koecher–Vinberg theorem : ウィキペディア英語版
Koecher–Vinberg theorem
In operator algebra, the Koecher–Vinberg theorem is a reconstruction theorem for real Jordan algebras. It was proved independently by Max Koecher in 1957 and Ernest Vinberg in 1961. It provides a one-to-one correspondence between
formally real Jordan algebras and so-called domains of positivity. Thus it links operator algebraic and convex order theoretic views on state spaces of physical systems.
==Statement==
A convex cone C is called ''regular'' if a=0 whenever both a and -a are in the closure \overline.
A convex cone C in a vector space A with an inner product has a ''dual cone'' C^
* = \. The cone is called ''self-dual'' when C=C^
*. It is called ''homogeneous'' when to any two points a,b \in C there is a real linear transformation T \colon A \to A that restricts to a bijection C \to C and satisfies T(a)=b.
The Koecher–Vinberg theorem now states that these properties precisely characterize the positive cones of Jordan algebras.
Theorem: There is a one-to-one correspondence between formally real Jordan algebras and convex cones that are:
* open;
* regular;
* homogeneous;
* self-dual.
Convex cones satisfying these four properties are called ''domains of positivity'' or ''symmetric cones''. The domain of positivity associated with a real Jordan algebra A is the interior of the 'positive' cone A_+ = \.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Koecher–Vinberg theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.